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Abstract: In order to address some fundamental questions in neutrino physics a wide,

future programme of neutrino oscillation experiments is currently under discussion. Among

those, long baseline experiments will play a crucial role in providing information on the

value of θ13, the type of neutrino mass ordering and on the value of the CP-violating phase

δ, which enters in 3-neutrino oscillations. Here, we consider a beta-beam setup with an

intermediate Lorentz factor γ = 450 and a baseline of 1050 km. This could be achieved in

Europe with a beta-beam sourced at CERN to a detector located at the Boulby mine in

the United Kingdom. We consider a neutrino run alone and show that, by exploiting the

oscillatory pattern of the signal, a very good sensitivity to CP-violation and the type of

hierarchy can be reached. We analyse the physics potential of this setup in detail and study

two different exposures (1× 1021 and 5× 1021 ions-kton-years). In both cases, we find that

the type of neutrino mass hierarchy could be determined at 99% CL, for all values of δ, for

sin2 2θ13 > 0.03. In the high-exposure scenario, we find that the value of the CP-violating

phase δ could be measured with a 99% CL error of ∼20o if sin2 2θ13 > 10−3, with some

sensitivity down to values of sin2 2θ13 ≃ 10−4. The ability to determine the octant of θ23

is also studied, and good prospects are found for the high-statistics scenario.
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1. Introduction

In recent years, compelling evidence for neutrino oscillations has been obtained in atmo-

spheric [1, 2], solar [3 – 5], reactor [6 – 8] and long-baseline accelerator [9, 10] neutrino ex-

periments. They have measured with good accuracy the oscillation parameters: two mass

squared differences, ∆m2
31 and ∆m2

21, where ∆m2
ji ≡ m2

j − m2
i , and two mixing angles,

θ12 and θ23. The third mixing angle θ13 is small and strongly constrained. A combined

analysis of all present data gives for the best fit values and the 2σ allowed ranges of the

measured oscillation parameters [11]:

(|∆m2
31|)BF = 2.4 × 10−3 eV2, 2.1 × 10−3 eV2 ≤ |∆m2

31| ≤ 2.7 × 10−3 eV2, (1.1)

(∆m2
21)BF = 7.6 × 10−5 eV2, 7.3 × 10−5 eV2 ≤ ∆m2

21 ≤ 8.1 × 10−5 eV2, (1.2)

(sin2 θ23)BF = 0.50, 0.38 ≤ sin2 θ23 ≤ 0.63, (1.3)

(sin2 θ12)BF = 0.32, 0.28 ≤ sin2 θ12 ≤ 0.37 . (1.4)

The combined limit on the θ13 mixing angle reads [11]

sin2 θ13 < 0.033 (0.050) at 2σ (3σ) . (1.5)

Despite the remarkable, recent progress in our understanding of neutrino physics, funda-

mental questions need to be addressed in the future in order to shed light on the theory

beyond the Standard Model of particle interactions which is responsible for neutrino masses

and mixing. We need to establish the nature of neutrinos (whether Dirac or Majorana par-

ticles), the neutrino mass ordering (normal or inverted), the absolute neutrino mass scale,

the value of the unknown mixing angle θ13, and if the CP-symmetry is violated in the

leptonic sector. In addition, it will be important to determine with better precision the

already known oscillation parameters.
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A wide, future programme of neutrino oscillation experiments, under discussion at

present, addresses some of the issues mentioned above [12, 13]. In particular, long baseline

experiments will aim at providing information, first on the values of θ13, and then on the

type of neutrino mass ordering and on the value of the CP-violating phase δ, which enters

in 3-neutrino oscillations. Superbeams, neutrino factory and beta-beams are studied in

detail. Superbeams extend the present experimental concepts for conventional beams with

an upgrade in intensity and in detector size. Various proposals are under consideration or

construction: T2K [14] in Japan, NOνA [15] in the US, and the possibility of a wide-band

beam if θ13 turns out to be large [16]. Neutrino factories [17] and beta-beams [18 – 20] (see

also ref. [21]) are novel concepts. In a neutrino factory, muons (antimuons) are produced,

cooled and accelerated to high Lorentz factor before stored in a decay ring. Muon neu-

trino (antineutrino) and electron antineutrino (neutrino) beams are produced and aimed

at a magnetised detector at very far distance. Magnetisation is necessary in order to sep-

arate the right muon disappearance signal from the wrong muon appearance signal, which

is sensitive to matter effects and CP violation. Beta-beams [18 – 21] exploit ions which

are accelerated to high Lorentz factors, stored and then β-decay, producing a collimated

electron neutrino beam. The typical neutrino energies are in the 200 MeV-GeV range,

requiring detectors with hundred-of-MeV thresholds and good energy resolution. Lower

energies imply shorter baselines and, typically, baselines of few hundred of km are consid-

ered. The only requirement is good muon identification in order to detect the appearance

of muon neutrinos (or antineutrinos) from the initial electron neutrino (or antineutrino)

beam. Hence, in principle, no magnetisation is required and therefore water Čerenkov, to-

tally active scintillator, liquid argon detectors and non-magnetised iron calorimeters could

be used, depending on the peak energy.

As it is well known, the determination of the mixing angle θ13, the type of neutrino

mass hierarchy, if the CP-symmetry is violated in the leptonic sector and the octant of the

mixing angle θ23, is severely affected by degeneracies [22 – 26]. For a fixed baseline and

neutrino energy different sets of the unknown parameters (θ13, δ, sgn(∆m2
31), θ23 6= π/4)

provide an equally good fit to the probability for neutrino and antineutrino oscillations.

Therefore, a measurement of these probabilities in an experiment, even if very accurate,

might not allow to discriminate between the various allowed solutions. Various strate-

gies have been envisaged in order to weaken or resolve this issue: from exploiting the

energy dependence of the signal in the same experiment [16], to the combination of dif-

ferent experiments [27 – 35], to using more than one baseline for the same beam [36 – 42].

On the other hand, the mixing angle θ13 also controls the Earth matter effects in multi-

GeV atmospheric [43 – 47] and in supernova [48] neutrino oscillations, and the magnitude

of the T-violating and CP-violating terms in neutrino oscillation probabilities is directly

proportional to sin θ13 [49]. Therefore, the determination of θ13 is crucial for the future

possibilities at neutrino oscillation experiments of pinning down the type of mass hierarchy,

if the CP-symmetry is violated in the lepton sector and the octant of θ23.

In beta-beam experiments, due to the energy dependence of the neutrino flux and of the

relevant cross sections for the interactions in the detector, in general a better sensitivity to

the type of hierarchy and CP violation can be reached for higher gammas and consequently

– 2 –



J
H
E
P
0
7
(
2
0
0
8
)
1
1
5

longer baselines [50, 51]. In particular, matter effects increase with distance and energy.

Neutrino oscillation experiments with baselines of few hundred km, as the CERN-Frejus

option or the T2K superbeam, turn out to have no sensitivity to the sign of ∆m2
31, for the

allowed values of θ13 [52, 31, 53, 51]. Higher energy setups for baselines > 500 km have

also been studied in detail [50, 51, 54 – 56, 42].

Equipping the CERN Super Proton Synchrotron (SPS) with a fast cycling supercon-

ducting magnet would provide a fast ramp which would avoid a significant loss of ions

by decay in the accelerating phase and would allow to reach high gammas. The studies

in ref. [55] considered the reach of this setup using an iron magnetised detector located

at Gran Sasso. They showed a very good physics reach, using both neutrinos from 18Ne

and antineutrinos from 6He. However, longer baselines can be considered in Europe. In

particular, it has been recently pointed out that the Boulby mine on the north-east coast

of England has excellent potential for expansions [57]. This would allow to excavate lab-

oratories able to host detectors with mass of a few tens of ktons, as required in a long

baseline experiment. Therefore, Boulby constitutes a very interesting option for a future

long baseline experiment in Europe, allowing for longer distances from CERN than Frejus,

Canfranc and Gran Sasso. In the present article, we exploit this new opportunity and

consider a neutrino beta-beam sourced at CERN and a detector located in the Boulby

mine. This choice of setup has a baseline of 1050 km that allows a superior sensitivity

to matter effects, as well as to CP violation with respect to lower energy possibilities. As

just mentioned, our choice is motivated on one side by the possibility of an upgrade of the

accelerator complex at CERN and on the other by the recent studies at the Boulby mine

which indicate the possibility to build large caverns in hard stable rock at this site [57].

Differently from ref. [55], we consider a detector with low energy threshold and good en-

ergy resolution. This has important physics implications as it allows one to fully exploit

the oscillatory pattern of the signal and in particular to be sensitive to both the first and

the second oscillation maximum. As the dependence of the signal on CP violation and

matter effects is very different at different energies, it is possible to resolve degeneracies

and reach an excellent sensitivity with a neutrino run only. Similar findings were obtained

in studies of electron capture beams [58] in which neutrino runs alone were considered.

The monochromaticity of the beam allowed to scan the oscillation probability at different

values of the neutrino energy in order to reach good sensitivity to CP-violation. We show

here that similar results are obtained also for betabeams (and wide band superbeams), if

a sufficiently good energy resolution can be achieved. Moreover, if long baseline (> 800–

1000 km) are chosen, also the type of hierarchy can be determined even for small values

of θ13.

The paper is organised as follows. In section 2 we describe the beta-beam setup

and the resulting neutrino flux. In section 3 we discuss the strategy beyond the choice of

experimental setup and in particular we discuss how a neutrino run can resolve degeneracies

if the oscillatory pattern of the probability is fully exploited. In sections 4 and 5 we give the

details of the numerical analysis and its results for the physics reach of the setup. Finally,

in section 6 we draw our conclusions.
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Current SPS Upgraded SPS

Isotope EP (MeV) γ Eν (GeV) Lmax (km) γ Eν (GeV) Lmax (km)

18Ne 1.86 270 1.0 510 590 2.2 1130

6He 1.94 160 0.6 320 355 1.4 710

8B 7.37 300 4.4 2270 670 9.8 5060

8Li 6.72 180 2.4 1240 400 5.4 2770

Table 1: Energy at the peak of the beta-beam spectrum in the rest frame (EP) and in the boosted

frame for the current (maximum proton energy of 450GeV) and upgraded (maximum proton energy

of 1 TeV) SPS. Also shown the maximum achievable γ factor in both cases for each isotope. The

maximum baseline, Lmax, represents the distance at which the first oscillation maximum of the

probability of conversion of νe into νµ is located.

2. The beta-beam setup

First introduced by Zucchelli [18], a beta-beam experiment exploits a well collimated neu-

trino beam produced by the acceleration and subsequent decay of stored β-emitting ions.

The neutrino flux is very well known since the beta decay is well understood theoretically

and all forward going neutrinos are collimated into a cone with opening angle 1/γ, γ being

the ion boost in the laboratory frame. The dominant factor in the choice of ion is the

need for a high luminosity at the detector site. Potential ions need to have a small proton

number to minimise space charge, and half-lives ∼ 1 second to reduce ion losses during the

acceleration while still maintaining a large amount of useful decays per year. The most

promising candidate ions are 18Ne and 8B for neutrinos, and 6He and 8Li for anti-neutrinos.

In table 1 we show, for each of these four isotopes, the energy at the peak of the beta-beam

spectrum in the rest frame and the value of this energy in the boosted frame for the current

SPS and for the upgraded SPS. We also show the baseline for which the peak energy would

correspond to the first oscillation maximum of the probability of transition of νe into νµ.

In the rest frame of the ion, the electron neutrino flux depends on the neutrino energy,

Eν , as
dΦrf

d cos θdEν
∼ E2

ν(E0 − Eν)
√

(Eν − E0)2 − m2
e . (2.1)

Here, E0 is the end-point energy of the decay and me is the mass of the electron. The

neutrino flux per solid angle at the detector located at distance L from the source after

boost γ is [50]

dΦlab

dΩdy

∣

∣

∣

∣

θ≃0

≃ Nβ

πL2

γ2

g(ye)
y2(1 − y)

√

(1 − y)2 − y2
e , (2.2)

where 0 ≤ y = Eν

2γE0
≤ 1− ye, ye = me/E0, Nβ is the number of useful ion decays per year,

and

g(ye) ≡
1

60

{

√

1 − y2
e(2 − 9y2

e − 8y4
e) + 15y4

e log

[

ye

1 −
√

1 − y2
e

]}

. (2.3)
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A neutrino with energy Erf in the rest frame will have a corresponding energy Eν = 2γErf

in the laboratory frame along the θ = 0◦ axis. Consequently, ions with lower end-point

values in the ion rest frame require higher γ in order to achieve the neutrino energies

appropriate to a given baseline. Most studies consider 18Ne and 6He due to their low Q-

values. For similar ion production rates, this choice will provide a more focused beam and,

the flux scaling as γ2, higher fluxes at the detector. It is noted also that placing a detector

off-axis still constitutes a Lorentz boost so that, unlike a superbeam, the spectral shape is

maintained although the mean energy will be lower than in the on-axis case.

The initial study of a beta-beam [18] considered a ‘low-γ’ machine which experimentally

had three stages: nuclide production via the Isotope Separation OnLine (ISOL) technique;

acceleration using existing technology such as the CERN Proton Synchrotron (PS) and

SPS before storing the ions in a decay ring. The feasibility of such scheme has been

demonstrated [59], the current magnetic rigidity of the SPS allowing a maximum γ ∼ 160

for 6He and γ ∼ 270 for 18Ne. The ions will be accelerated to 300 MeV/amu through the

use of a linac and rapid cycling synchrotron before being fed into the CERN PS. It is

envisaged that there will be 16 bunches of 2.5 × 1012 ions which will be merged to 8 upon

acceleration to γ = 9. The final phase of the acceleration requires the transfer to the SPS

where they will be accelerated to the γ required for the experiment. The ions are then

stacked in a decay ring so that enough ions decay to achieve a useful neutrino flux. For

the γ = 100 scenario, it is proposed to have a decay ring with the same circumference as

the SPS (6880 m) but in a ‘racetrack’ design with 2500 m straight sections. For a single

baseline beta-beam, ∼ 35% of the neutrinos will be available from a single straight section.

With the current SPS, the CERN-Frejus baseline (L ∼ 130 km) is the only option available.

However, the short distance does not allow sensitivity to matter effects and to the neutrino

mass ordering.

Some LHC upgrade scenarios conceive implementation of the SPS with fast cycling

superconducting magnets leading to the injection of 1TeV protons into the LHC. Such a

setup would allow the acceleration of 18Ne and 6He up to γ of 580 and 350, respectively.

Various studies have exploited this possibility [50, 55, 56, 42]. A number of issues (e.g.,

the achievable intensities or the size of the decay ring) need to be studied in detail in

order to understand the feasibility of these higher-γ beta-beams and their physics reach.

Another option which emerged in the recent past is the possibility of high-Q value beta-

beams [60]. These beams exploit the decay of high Q-valued ions, namely 8B and 8Li. The

same neutrino energies can be achieved with a boost factor 4 times smaller than for 18Ne

and 6He. In order to obtain useful luminosities at the detector, a much higher number of

beta decays is therefore required.

The intensity of the beam plays a crucial role in the physics reach of the setup as it

controls the statistics available. It depends mainly on the production rate of the isotopes

and on space-charge limitations. At present, three possibilities for ion production have

been considered: ISOL method at medium energy and direct production with and without a

storage ring. The ISOL technique [61] uses typically (0.1–2) GeV protons from the proposed

2.2 GeV Super Proton Linac, which will be used to activate the nuclear reactions producing

the nuclide of interest. For 6He production, a heavy metal target, such as mercury or water-
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cooled tungsten, will be used to transform the proton beam into a neutron flux which then

impacts on a cylinder of BeO surrounding the target. 6He is then produced via the 9Be(n,α)

reaction. The 18Ne can be created directly by proton spallation on a MgO target. The

present studies indicate that with a 200 kW power, one could achieve a number of ions per

second > 1013/s for 6He and < 8×1011 for 18Ne. For direct production, low energy and high

intensity ion beams are used on solid or gas targets. Compound nuclei form at low energy

due to the high cross section and the required ions are generated. Various preliminary

studies show that a production rate of 1013 ions per second could be achieved for 18Ne and
6He. Direct production can be enhanced using a storage ring in which primary ions which

did not interact at the first passage are recirculated and reaccelerated. This technique is

possible thanks to ionisation cooling [60] and might allow high production rates of 8B and
8Li, up to 1014/s for 8Li and 1013/s for 8B (the higher rates compensating for the lower

boost, the flux varying with γ2).

3. Resolving neutrino oscillation degeneracies in a neutrino run

In our analysis we consider a beam of neutrinos only, but exploit the rich oscillatory pattern

of the signal. In particular, requiring a low energy threshold for the detector, we can access

more than one oscillation maximum. This allows one to obtain a very good physics reach

and to efficiently resolve the problem of degeneracies.

The oscillation probability P (νe(νe) → νµ(νµ)) ≡ P±
eµ for νe (νe) into νµ (νµ) conversion

can be expanded in the small parameters θ̄13, ∆12/∆13, ∆12/A and ∆12L [62], where the

shorthand ∆ji ≡ ∆m2
ji/(2E) is being used,

P±
eµ(θ̄13, δ̄) = sin2 2θ̄13 sin2 θ̄23

(

∆31

B∓

)2

sin2

(

B∓L

2

)

(3.1)

+ cos2 θ̄23 sin2 2θ̄12

(

∆21

A

)2

sin2

(

AL

2

)

+ cos θ̄13 sin 2θ̄13 sin 2θ̄12 sin 2θ̄23
∆21

A

∆31

B∓

×

× sin

(

AL

2

)

sin

(

B∓L

2

)

cos

(

±δ̄ − ∆31L

2

)

,

where the ± corresponds to neutrinos/anti-neutrinos and B∓ ≡ A∓∆31. Here we are using

A =
√

2GF n̄e(L) (the constant density approximation for the index of refraction) where

n̄e = 1/L
∫ L

0 ne(L
′)dL′ is the average electron density and ne(L) is the electron density

along the baseline.

The number of neutrino (antineutrino) events in the i-th neutrino (antineutrino) energy

bin for a given pair (θ̄13, δ̄) is given by

Ni(θ̄13, δ̄) = NT t

∫ Ei+∆E

Ei

ǫ(Eν) σνµ(νµ)(Eν) P±
eµ(Eν , θ̄13, δ̄) Φνe(νe)(Eν) dEν , (3.2)

where NT is the number of targets in the detector, t is the time of data taking, ǫ(Eν) is

the detector efficiency, σ(Eν) is the interaction cross section, Φ(Eν) is the beam spectrum

– 6 –
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and ∆E is the neutrino energy resolution of the detector. As it is apparent from eq. (3.1),

the extraction of θ13, the sign of ∆m2
31, δ and θ23 from eq. (3.2) suffers from the problem

of degeneracies [22 – 26]. In addition to the true solution (θ̄13, δ̄, sign(∆m2
31), θ̄23), other

fake (clone) solutions (θ13, δ, ±sign(∆m2
31), θ23) are allowed.

In order to get an analytical understanding of the degeneracies, we consider the simpli-

fied case of infinite energy resolution, for which the integrals in eq. (3.2) reduce to products.

We compare the number of events at the neutrino energy of the first oscillation maximum,

E1, with the number at the second oscillation maximum, E2. In the approximation con-

sidered, we have N1(E1) = c1P
+
eµ(E1) and N2(E2) = c2P

+
eµ(E2), where c1 and c2 are the

product of the number of targets, time of data taking, efficiency, the neutrino flux and cross

section at each of the two energies, respectively. Although a more realistic analysis should

be performed taking into account the finite energy resolution, statistical and systematic

errors, backgrounds and the full differential cross section for the detection processes, we

use this simplified approach to show the potentialities of using the spectral information

with only one polarity. As it will be shown in section 5, a more detailed analysis confirms

the qualitative results obtained here.

Let us first consider the intrinsic degeneracy, for which given the true value of the pair

(θ̄13, δ̄), the clone solution (θ13, δ) is located by solving [22]

N1(θ̄13, δ̄, sign(∆m2
31), θ̄23) = N1(θ13, δ, sign(∆m2

31), θ̄23) , (3.3)

N2(θ̄13, δ̄, sign(∆m2
31), θ̄23) = N2(θ13, δ, sign(∆m2

31), θ̄23) . (3.4)

As it is straightforward to show, only one solution is allowed for θ13 and δ for a measured

number of events N1 and N2. The CP-violating effects become more important at low

energy and in particular at the second oscillation maximum. Therefore, the intrinsic de-

generacy is fully resolved by exploiting the neutrino signal at first and second oscillation

maximum. In the case of a neutrino and antineutrino beam considered at first oscillation

maximum, a similar result is obtained.

We study next the sign degeneracy. The clone solution satisfies [23]

N1(θ̄13, δ̄, sign(∆m2
31), θ̄23) = N1(θ13, δ,−sign(∆m2

31), θ̄23) , (3.5)

N2(θ̄13, δ̄, sign(∆m2
31), θ̄23) = N2(θ13, δ,−sign(∆m2

31), θ̄23) , (3.6)

and is found to be

sin2 2θ13 ≃ sin2 2θ̄13

(

1 + 4
A

∆31

)

, (3.7)

sin δ ≃ sin δ̄ , (3.8)

where we have only kept terms up to first order in A/∆31. This shows that the sign

degeneracy affects only mildly the determination of θ̄13 and very weakly that of δ̄. The

signal at first and second oscillation maximum is not sufficient to determine the type

of neutrino mass ordering. However, including information on the neutrino oscillation

probability at other energies breaks this degeneracy. In particular, matter effects increase

– 7 –
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with energy and the high energy bins turn out to play a very important role in breaking

the sign degeneracy. In the case of combining the first oscillation maximum for neutrinos

and antineutrinos, we have also a clone solution, with information from additional energy

bins also necessary to fully resolve this degeneracy.

Finally, we study the octant degeneracy, for which the clone solution is such that [24]

N1(θ̄13, δ̄, sign(∆m2
31), θ̄23) = N1(θ13, δ, sign(∆m2

31), π/2 − θ̄23) , (3.9)

N2(θ̄13, δ̄, sign(∆m2
31), θ̄23) = N2(θ13, δ, sign(∆m2

31), π/2 − θ̄23) , (3.10)

and is given by

sin2 2θ13 ≃ tan2 θ̄23 sin2 2θ̄13 + (1 − tan2 θ̄23) sin2 2θ̄12

(

∆21

∆31

)2 π2

4
, (3.11)

sin δ ≃ sin δ̄

tan θ̄23

(

1 +
π2

8

(

1 − 1

tan2 θ̄23

)

sin2 2θ̄12

sin2 2θ̄13

(

∆21

∆31

)2
)

. (3.12)

This is valid in the whole allowed range of the oscillation parameters for sin2 2θ̄13 > 10−3

and only terms up to O(∆21/∆31)
2 have been retained. As it has been discussed [63],

the information from the low energy bins plays a crucial role in resolving this degeneracy.

Similar considerations can be done for the case of a neutrino and antineutrino run.

Our simplified analysis suggest that even with the neutrino run alone, by exploiting

the oscillatory pattern of the signal, it is possible to resolve degeneracies and obtain a very

good sensitivity to the unknown neutrino parameters. In the following, we substantiate

these claims with a detailed numerical analysis.

4. Numerical simulations and analysis of the data

The physics strategy followed here exploits electron neutrino beams from boosted 18Ne β+

decays for a single baseline. Future CERN accelerator facilities could provide the produc-

tion environment. The neutrino detector would be ideally placed at Boulby, located at

L = 1050 km from CERN. The Lorentz factor we assume here corresponds to a conser-

vative (for the upgraded SPS) γ = 450, for which the mean electron neutrino energy is

〈Eν〉 ≃ γE0 ∼ 1.5 GeV, E0 = 3.41 MeV being the positron end-point energy for 18Ne. With

such a setup, both the first and second oscillation maxima of the appearance probability

could, in principle, be studied. This is illustrated in figure 1 where we show the transition

probability of νe into νµ for two values of the CP-violating phase δ and for both mass

orderings.

The results of this study are shown for two possible experimental scenarios, which only

differ in their statistics. This analysis allows us to quantify the benefits of increased detector

sizes, ion intensities and/or exposure times. We first consider an exposure corresponding

to 1021 ions-kton-years. This could be obtained, for example, assuming 2 × 1018 useful

ion decays per year and a 50 kton detector with 100% efficiency located at Boulby with

10 years of data taking. As we will show, the statistics plays a crucial role in the physics

– 8 –
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Figure 1: Transition probability of νe into νµ as a function of the neutrino energy for normal

hierarchy and δ = 0◦ (blue solid line), normal hierarchy and δ = 90◦ (blue dotted line), inverted

hierarchy and δ = 0◦ (red short dashed line) and inverted hierarchy and δ = 90◦ (red long dashed

line). Also shown in arbitrary units the unoscillated beta-beam neutrino spectrum from 18Ne decays

and γ = 450.

reach of the setup. Therefore, we also study a rather optimistic scenario, obtained by

upgrading the first scenario by a factor of five in statistics, i.e., with an exposure of 5 ×
1021 ions-kton-years. Considering that the time of data taking cannot be substantially

extended, this exposure could be achieved by using a larger detector or increasing the

ion luminosity or both. Obviously, the results for exposures larger than the first scenario

but not as quite optimistic as the second one will interpolate between the two. Possible

detector technologies considered in the literature include water Čerenkov, liquid argon,

totally active scintillator (TASD) or iron calorimeter detectors. For our purposes low

energy threshold and good neutrino energy resolution are requirements for the choice of

detector technology. For instance, liquid argon and totally active scintillator detectors

might have these characteristics [64, 65, 63].

As mentioned above, a crucial aspect of the analysis performed here is to use the

spectral information, and hence the energy binning of the signal becomes fundamental.

As carefully described in the previous section, our main strategy consists in exploiting si-

multaneously many E/L’s, and therefore we assume a 200 MeV bin width and an energy

detection threshold of 400 MeV. In what follows, the muon-neutrino appearance signal is

binned in eight bins with a bin width of 200 MeV in the [0.4, 2.0] GeV energy range, plus

– 9 –
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Figure 2: For an exposure of 5×1021 ions-kton-years, 90%, 95% and 99% (for 2 d.o.f) CL contours

resulting from the fits if the true values Nature has chosen are θ13 = 3◦ (left panel) or θ13 = 1◦

(right panel), and δ = 0◦, 90◦, −90◦ or 180◦. Dashed-red contours represent the ∆χ2 of the

hierarchy-clone solution with respect to true solution. The true solution to which the clone solution

corresponds to is also shown.

a unique, last bin, filled with the neutrino events from 2.0 GeV up to the end point of

the spectrum at 3.06 GeV. For a future liquid argon or totally active scintillator detector

(TASD), the expected energy resolution could be even better and allow a more precise

sampling of the oscillation probability. In particular, for quasi-elastic events, which domi-

nate below 1 GeV, a liquid argon detector has an energy resolution better than 2%, while

at 2 GeV the energy resolution is ∆E/E ∼ 10% [64]. In a TASD, at 2GeV the energy

resolution is better than 6% for νe charged current events and than 4% for quasi-elastic νµ

events [65]. For our numerical analysis, we use the following χ2 definition:

χ2 =
∑

i,j

(ni − Ni)C
−1
ij (nj − Nj) , (4.1)

where Ni is the predicted number of muons for a certain oscillation hypothesis, ni,p are

the simulated “data” from a Gaussian or Poisson smearing. The 2Nbin × 2Nbin covariance

matrix C, which is given by

Cij ≡ δij(δni)
2 (4.2)

where (δni) =
√

ni + (fsys · ni)2, contains both statistical and a 2% overall systematic

error (fsys = 0.02). The confidence level (CL) contour plots presented in the figures in the

next section have been calculated for 2 degrees of freedom (d.o.f.) statistics.

Realistic background assumptions have been included when computing the simulated

data. We have considered two types of backgrounds: an intrinsic beam-induced background

plus the atmospheric neutrino contribution. The intrinsic background is taken as a constant

– 10 –
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Figure 3: 99% CL hierarchy resolution (2 d.o.f). The dotted red curve depicts the results assuming

an exposure of 1021 ion-kton-years in Boulby. The solid blue curve depicts the results assuming the

statistics quoted before is improved by a factor of five.

fraction, 0.1%, of the unoscillated events and is relevant only for sin2 θ13 < 10−3. It comes

mainly from neutral current pion production and electrons misidentification as muons.

In the energy range of interest, there are about 30 atmospheric neutrino interactions per

kton-year which could mimic a muon coming from the oscillated νe → νµ [20, 66, 67].

Assuming a beam duty factor of 10−3, the number of muon background events induced

by atmospheric muon neutrino interactions would be ∼ 0.03 per kton-year, to be rescaled

accordingly to the detector size and the exposure time. We think the treatment of the

backgrounds presented here is conservative.

5. Results

We present in figure 2 the 90%, 95% and 99% CL contours for a fit to the simulated data

from the beta-beam experiment described in the previous section. The “true” parameter

values that we have chosen for these examples are depicted in the figures with a star: we

have explored four different values of δ = 0◦, 90◦, −90◦ and 180◦ and two possible values

of θ13 = 3◦ (left panel) and 1◦ (right panel). The simulations are for the normal mass

hierarchy and θ23 in the first octant (sin2 θ23 = 0.41 which corresponds to θ23 = 40◦).

The statistics considered corresponds to the optimistic high-statistics scenario, with an

exposure of 5 × 1021 ions-kton-years. The analysis depicted in figure 2 includes the study
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Figure 4: Discovery at 99% CL of CP violation (2 d.o.f). The dashed blue curves depict the

results assuming an exposure of 1021 ions-kton-years and 5 × 1021 ions-kton-years in Boulby. The

solid red curve depicts the results for an exposure of 2.5 × 1021 ions-kton-years for neutrinos and

for antineutrinos, so that the total exposure is 5 × 1021 ions-kton-years.

of the discrete degeneracies. That is, we have fitted the data assuming the wrong hierarchy

(i.e., negative hierarchy) and the additional clone solutions (if present) are shown in dashed

red. We have also considered the impact of the wrong choice for the θ23 octant (we fitted

the data assuming sin2 θ23 = 0.59, which corresponds to θ23 = 50◦). The contours for the

clone (degenerate) solutions show the ∆χ2 difference with respect to the true solution, i.e.,

∆χ2 = χ2
min,wrong − χ2

min,true. Notice that in figure 2 the θ23-octant ambiguity is solved

at the 99% CL for the values of δ illustrated. The additional solutions associated to the

wrong choice of the mass hierarchy are not present at the same CL if θ13 is small enough,

i.e., θ13 < 6◦. For larger values of θ13 the sign degeneracy is present for some values of

the CP-violating phase δ, but its location is very similar to the simulated true value and

therefore the presence of these degeneracies will hardly interfere with the measurement of

CP violation. This behaviour of the θ23 degenerate solutions is opposite to the normal

case, in which the resolution of the degeneracies gets harder as the value of x θ13 decreases.

The reason for that is the enormous impact of the solar term at the lower energies and the

long baseline exploited here. For instance, for 〈Eν〉 ≃ 1 GeV, the solar term contribution

is larger than that of the atmospheric term for all the values of θ13 < 6◦.

Figures 3, 4 and 5 summarise, for the low- and high-statistics scenarios, the physics

reach of the beta-beam experiment considered here. The analysis takes into account the

impact of both the intrinsic and discrete degeneracies. Figure 3 shows the region in the

(sin2 2θ13, “fraction of δ”) plane for which the mass hierarchy can be resolved at the 99%

CL (2 d.o.f). Note that, with a background level of 0.1% and a beam duty cycle of 10−3,

the hierarchy can still be determined in both scenarios if sin2 2θ13 > 0.03 (i.e., θ13 > 5◦)
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Figure 5: 99% CL determination of the θ23 octant for three different true values, θtrue
23 = 38◦, 40◦

and 50◦. The region to the right of the curves denotes the parameter space for which the octant

degeneracy is not resolved at the 99% CL. Results are shown for an exposure of 5× 1021 ions-kton-

years.

for all values of the CP-violating phase δ. Figure 4 shows the region in the (sin2 2θ13, δ)

plane for which a given (non-zero) value of the CP-violating phase δ can be distinguished

at the 99% CL (2 d.o.f.) from the CP-conserving case, i.e., δ = 0,±180◦. The results

are given for both the low- and high-statistics scenarios. Again, even in the presence of

non negligible beam-induced plus atmospheric background levels, the CP-violating phase

δ could be measured with a 99% CL error smaller than ∼ 20◦ if sin2 2θ13 > 10−3 in the

high-statistics scenario. For comparison, in figure 4, we also show the physics reach of a

setup with 2.5 × 1021 ions-ktons-years for neutrinos and for antineutrinos. The sensitivity

for the neutrino-antineutrino run is very similar to the one for neutrinos, for the same

total number of ions-kton-years. These findings support the analytical results in section 3

according to which, by exploiting the oscillatory pattern of the signal, the degeneracies

could be efficiently resolved and a good physics reach can be obtained by running in one

polarity only.

Finally, the area to the left of the curves in figure 5 represents the region in the

(sin2 2θ13, δ) plane for which the octant in which θ23 lies can be determined at the 99% CL

(2 d.o.f). In addition to our default value θ23 = 40◦, we have also shown two other cases,

θ23 = 38◦ and 50◦. The results are illustrated for the high-statistics scenario. In general,

the resolution of the θ23 octant ambiguity is extremely difficult, and in order to eliminate

this degeneracy, combining data from different experiments might be crucial [68]. Here, we

benefit from the solar term contribution in the lower energy bins and therefore, the octant

ambiguity is resolved for relatively small values of θ13, if the statistics is high enough. For

the low luminosity scenario, the degeneracy is harder to resolve and it is present (at the

99% CL) in almost all the parameter space explored here.

– 13 –



J
H
E
P
0
7
(
2
0
0
8
)
1
1
5

6. Summary and conclusions

In the present article, we have studied the physics reach of a beta-beam with intermediate

γ and long baseline. We have considered a neutrino beam sourced by 18Ne decays with

γ = 450 and a baseline of 1050 km corresponding to the CERN-Boulby mine distance. This

choice of setup is motivated by the recent studies about the possible upgrade of the SPS at

CERN which would allow to obtain high boost factors for the ions and by the possibility

of locating few-ten-kton size detectors at the Boulby mine.

In a qualitative way, we have analytically studied the capability that a neutrino run

alone could have to resolve the problem of degeneracies and we have shown that, by exploit-

ing the oscillatory behaviour of the signal, it is possible to fully resolve such degeneracies

in a large part of the allowed parameter space. We have performed a numerical analysis

simulating the data for a future beta-beam experiment with an exposure of 1021 useful

ion decays-kton-years. We have assumed an energy detection threshold of 400 MeV and

a 200 MeV bin width in the [0.4, 2.0] GeV energy range, plus a unique, last bin, up to

the end point of the spectrum at 3.06 GeV. Realistic backgrounds (intrinsic plus atmo-

spheric neutrino contamination) and beam-duty factor (10−3) have been considered when

computing the χ2 function used for this analysis. By exploiting the neutrino data only,

the beta-beam setup presented here can determine the type of neutrino mass hierarchy at

the 99% CL, regardless of the value of the CP-violating phase, for values of the mixing

parameter sin2 2θ13 larger than 0.03, and establish leptonic CP violation if sin2 2θ13 > 0.01.

If the mixing angle θ13 turns out to be very small, a quest for physics answers would

evidently require an increase of the exposure quoted above. We illustrate the physics reach

of this beta-beam setup assuming a factor of five improvement in the statistics, considering

5 × 1021 ions-kton-years. In this high-luminosity scenario, the value of the CP-violating

phase δ can be measured with a 99% CL error of ∼ 20◦ if sin2 2θ13 > 10−3, with some

sensitivity down to very small values of sin2 2θ13 ≃ 10−4 . If θ13 turns out to be small, the

octant degeneracy can be resolved through the solar mixing term contribution.

Our analysis shows that a neutrino run can be as sensitive as a neutrino plus antineu-

trino beam and the physics reach in the two cases must be studied in detail in realistic

scenarios which take into account the achievable ion production rates and the systematic

errors in the two cases. In particular, it is not clear at present what will be the exact

rates of production for different ions and the subsequent neutrino and antineutrino fluxes

achievable. Statistics plays a crucial role in the sensitivity to the unknown oscillation para-

maters and therefore our analysis suggests that the choice of the ion and polarity for the

run should be carefully considered. For example, if, after running with a neutrino beam,

the type of hierarchy would be found to be normal, the choice of continuing with neutrinos

or swapping to antineutrinos will require a careful analysis of the physics reach of the two

options, which takes into account the achievable statistics and the associated systematic

errors.

In summary, we have analysed a beta-beam setup with a neutrino run and we have

found that, by exploiting the oscillatory behaviour of the signal, this option provides a very

good overall physics reach, competitive with other setups explored in the literature.
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[44] M.C. Bañuls, G. Barenboim and J. Bernabéu, Medium effects for terrestrial and atmospheric

neutrino oscillations, Phys. Lett. B 513 (2001) 391 [hep-ph/0102184];
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S. Palomares-Ruiz and J. Bernabéu, Atmospheric neutrinos and nu mass hierarchy, Nucl.

Phys. 138 (Proc. Suppl.) (2005) 398 [hep-ph/0312038].

– 19 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC33%2C243
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC33%2C243
http://arxiv.org/abs/hep-ph/0305185
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C053007
http://arxiv.org/abs/hep-ph/0206038
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C053002
http://arxiv.org/abs/hep-ph/0504015
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C073007
http://arxiv.org/abs/hep-ph/0510182
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C033003
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C033003
http://arxiv.org/abs/hep-ph/0504026
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB637%2C266
http://arxiv.org/abs/hep-ph/0504061
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C013006
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C013006
http://arxiv.org/abs/hep-ph/0609286
http://jhep.sissa.it/stdsearch?paper=05%282008%29050
http://arxiv.org/abs/0712.0796
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB434%2C321
http://arxiv.org/abs/hep-ph/9805262
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB538%2C25
http://arxiv.org/abs/hep-ph/9805272
http://arxiv.org/abs/hep-ph/9810501
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C83%2C1096
http://arxiv.org/abs/hep-ph/9903399
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C85%2C3979
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C85%2C3979
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C073003
http://arxiv.org/abs/hep-ph/9903424
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C95%2C211801
http://arxiv.org/abs/hep-ph/0506064
http://jhep.sissa.it/stdsearch?paper=05%282007%29077
http://jhep.sissa.it/stdsearch?paper=05%282007%29077
http://arxiv.org/abs/hep-ph/0612285
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB513%2C391
http://arxiv.org/abs/hep-ph/0102184
http://arxiv.org/abs/hep-ph/0112002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C110%2C339
http://arxiv.org/abs/hep-ph/0201090
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB531%2C90
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB531%2C90
http://arxiv.org/abs/hep-ph/0110071
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C138%2C398
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C138%2C398
http://arxiv.org/abs/hep-ph/0312038


J
H
E
P
0
7
(
2
0
0
8
)
1
1
5
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